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Abstract

This paper discusses the impact of linguistic contact on the make-up of consonantal
inventories of the languages of Eurasia. New measures for studying the importance of
language contact for the development of phonological inventories are proposed, and
two empirical studies are reported. First, using two different measures of dissimilar-
ity of phonemic inventories (the Jaccard dissimilarity measure and the novel Closest-
Relative Cumulative Jaccard Dissimilarity measure), it is demonstrated that language
contact—operationalized as languages being connected by an edge in a neighbor
network—makes a significant contribution to between-inventory differences when
phylogenetic variables are controlled for. Second, a novel measure of the exposure of a
language to a particular segment—the Neighbor-Pressure Metric (NPM)—is proposed
as ameans of quantifying language contact with respect to phonological inventories. It
is shown that additionof NPMhelps achievehigherpredictionaccuracy thanusingbare
phylogenetic data and that distributions of different consonants display a different
degree of dependence on language-contact processes. Finally, more complex models
for predicting consonant inventories are briefly explored, demonstrating the presence
of complex non-linear relationships between inventories of neighboring languages.
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1 Introduction

The search for the factors shaping the structures of phonological inventories of
the world’s languages has been one of the primary goals of phonological typol-
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ogy since thework of Trubetzkoy (1939) andHockett (1955). Early structuralists’
attempts at formulating the laws of inventory structures in terms of a minimal
number of oppositions gave rise to a rich literature on phonological-feature
theory aiming at enumerating a minimal set of compositional atomic prop-
erties of phonemic segments necessary and sufficient to describe the world’s
phonologies (Clements 2003; Mielke 2008) and at producing generalizations
about structures of phonological systems as described using such feature sets
(Dunbar & Dupoux 2016).
Non-formalist attempts at inventory-structuremodellingweremarkedly less

numerous and were nearly exclusively concentrated on vowels, presumably
since those can be thought of as inhabiting a continuous low-dimensional
space of formants amenable to mathematical modelling (Liljencrants & Lind-
blom 1972; Stevens 1989; Cotterell & Eisner 2017).
This work on the consonants and consonant-and-vowel inventories was

mostly descriptive in nature. Starting with the seminal monograph by Mad-
dieson (1984), researchers have put a great deal of effort into discovering sta-
tistical tendencies in the distributions of different types of segments and their
correlations based on cross-linguistic samples, cf. a recent overview by Gordon
(2016).
A series of publications appearing in the last several years suggests that there

are extra-linguistic correlates possibly influencing the structure of segmental
inventories of theworld’s languages, such as distance fromAfrica, arguablyneg-
atively correlated with phonological complexity (Atkinson 2011 cf. the critique
in Jaeger et al. 2011); average annual temperature and sexual freedom (posi-
tively correlated with the prominence of sonority in an inventory Fought et
al. 2004; Ember & Ember 2007); population size (positively correlated with
phonological complexity: Hay&Bauer 2007; Trudgill 2011; Atkinson 2011;Wich-
mann et al. 2011; Nettle 2012, cf. objections in Donohue & Nichols 2011 and
Moran et al. 2012); altitude atwhich the language is spoken (possibly conducive
to the development of ejective sounds, see Everett 2013), and several others. A
general review of correlation studies is presented in Ladd et al. (2015).
These results enrich our understanding of the properties of human lan-

guage, but they do not go a long way towards answering the following basic
question: towhat extent are theworld’s languages shaped by non-universal fac-
tors? The importance of this question is hard to overestimate. Ian Maddieson
writes: “As an illustration, the modal number of vowel qualities in language
inventories is shown to differ for the set of African languages in UPSID from
those of other continents.” (Maddieson 1991: 193) This effectively implies that,
for the purpose of linguistic sampling, all languages outside Africa form a unit,
samples from which cannot be considered independent. Maddieson does not
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provide a statistical analysis which could substantiate such a claim,1 but the
possibility itself is troubling for many kinds of linguistic sampling procedures.
Generally speaking, we are presented with a case of duality: if we want to

predict particular properties of particular languages we need to have a good
grasp of the contribution of the same factors we need to control for when aim-
ing at general statements about the typology of languages.
Two factors are usually held accountable for non-randomness in the distri-

bution of linguistic variables in the world’s languages: linguistic phylogenetics,
or inheritance, and contact phenomena.
Linguistic phylogenetics is a very complicated and hotly debated subject

(Chang et al. 2015; Wichmann 2017), but in practical typological analyses it
is usually considered non-controversial: most of the world’s languages are
assigned to one of the several relatively well-established large families (phyla),
which in most cases have an agreed-upon set of large subgroups (genera).
These data are available in repositories such as Ethnologue2 andGlottolog3 and
are routinely included in quantitative typological datasets as control variables.
Some work has been done to directly estimate the impact of phylummember-
ship on the distribution of linguistic variables (Bickel 2013).
Contact phenomena are much less straightforward. As Ladd et al. put it:

“Unfortunately, for purposes of conducting correlational analyses, quantifying
contact is evenmore difficult than quantifying genealogical relatedness. (A fur-
ther complication arises from the fact that, by the nature of language splits,
languages in contact also tend to be related.)” (Ladd et al. 2015: 230–231) More-
over, it has long been known that non-neighboring languagesmay display non-
trivial similarities as a consequence of belonging to the same linguistic area
(Nichols 1992; Thomason 2000). A long list of linguistic areas have been pro-
posed in the literature, together covering a good share of the Earth’s land mass
(e.g., mainland South East Asia (Enfield 2005), the Macro-Sudan belt (Gülde-
mann 2008), India (Emeneau 1956), the Balkans (Friedman 2000), the Circum-
Andean region (Michael et al. 2014), etc.—the notion of linguistic area, how-
ever, is far from unproblematic, cf. Campbell 2006, 2017). In most cases, trying
to account for possible local disturbances, typologists have used very big land-
masses roughly equivalent to continents as control variables (Dryer 1989).How-
ever, some proposed linguistic areas, such as the Pacific Rim (Bickel & Nichols
2006) or Beringia (Fortescue 1998), cut across even these macro regions.

1 It may be remarked that to prove such a bottleneck scenario there should be several compa-
rable areas in Africa, and not just one.

2 https://www.ethnologue.com/.
3 http://glottolog.org/.

https://www.ethnologue.com/
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Theoretically, it is possible to account for complex areal structures by assign-
ing languages to a succession of areas of predefined magnitude. Thus, a lan-
guage from the western coast of South America can simultaneously partici-
pate in (i) the Circum-Andean linguistic area, (ii) the South American linguis-
tic area, and (iii) the Pacific-Rim area. However, several intersecting linguistic
areas can potentially exist on any level of geographical magnitude, making any
analysis based on a fixed number of area variables problematic.
It seems that there are two ways to overcome the problem of areality. The

first way is to dispense with the idea of independently pre-defined linguistic
areas, statistically recover areality patterns in the distribution of different lin-
guistic features, and then use the results of this procedure for sampling and
hypothesis testing (Daumé III 2009).
The second way is to make a simplifying assumption that it is possible to

devise a metric measuring the pressure exerted on a given language by its
neighbor languages nudging it towards acquiring or preserving a feature of
interest. If, leaving aside the hypothesis that different linguistic features have
different diffusion rates in different regions (Wichmann & Holman 2009), we
can disregard wider areal structures, we will be left with much simpler statis-
tical models involving fewer nominal predictors, which, if numerous or multi-
leveled, demand prohibitive amounts of data to achieve statistically significant
results.4 This is the approach that will be further explored in this paper.
It must be noted that in order to substitute a numeric neighbor-pressure

variable for a nominal macro-areal one we must have genuine local informa-
tion, at least partly directly reflecting the contact history of the languages in
the sample. Geographically sparse samples, such as those used in WALS chap-
ters (Dryer & Haspelmath 2013), are not suited for this task as they are not
spatially dense or even spatially uniform. The only type of linguistic data for
which spatially dense samples for large regions is available at the moment
is phonological segmental inventories. Most results in phonological typology
were achieved using IanMaddieson’s balanced sample (Maddieson 1984; Mad-
dieson & Precoda 1992); however, in recent years a series of phonological
databases including PHOIBLE (Moran et al. 2014), SAPhon (Michael et al. 2015),
and the Database of Eurasian Phonological Inventories (EURPhon) (Nikolaev
et al. 2015) have provided dense samples of phonological data for severalmacro
regions, especially Eurasia and South America.

4 Importantly, even if we do not make such an assumption, it will be possible to account for
differences between regions by assigning some independently computed ‘local-intensity-of-
contact’ values to each region and then using these values to weight the language-contact-
intensity variable.
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The aimof this paper is to use these data in order to assess thedependenceof
consonant inventories of Eurasian languages on the inventories of neighboring
languages.
In §2, I introduce the language data and the neighbor network of Eurasian

languages used tooperationalize thenotionof language contact in the reported
studies.
In §3, using pairwise whole-inventory comparisons, I show that language

contact played a significant rôle in shaping consonant inventories of Eurasian
languages, clearly detectable over and above that of phylogenetic inheritance
and even possibly obliterating the effect of phylogeny on the level of the phy-
lum.
In §4, a new local densitymeasure—the neighbor-pressuremetric (NPM)—

is proposed. This measure is then used tomodel distributions of consonants in
languages of Eurasia. It is shown that distributions of different segments show
a different degree of dependence on language contact, viz. that some segments
easily cross inter-genus and inter-phylum boundaries while others seem to be
transmitted ‘vertically’.
A series of models is then fit to predict distributions of consonants in the lan-

guages of Eurasia. It is shown that the addition of NPM to themodel noticeably
helps improve prediction accuracy, but that significantly better results can be
achieved by allowing for complex non-linear dependencies between invento-
ries of neighboring languages and by considering internal inventory structures.
Section 5 concludes.

2 Data and the neighbor graph

2.1 Data
Languages of Eurasia were chosen as a dataset for this study because we have
access to a sample of languages from this region with the necessary degree of
spatial density and sufficiently varied in terms of linguistic phylum and genus
membership. For the purposes of this paper, a pooled dataset was constructed
consisting of Eurasian data from PHOIBLE (regions ‘Asia’ and ‘Europe’ exclud-
ing languages of Indonesia, Malaysia, and Brunei) and all data from EURPhon,
together comprising 481 languages.
All segments were parsed into an IPA-chart-based feature representation,

i.e. /p/ is represented as {voiceless, bilabial, plosive} and /ʈʷ/, as {voiceless,
retroflex, plosive, labialized}.
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2.2 The neighbor graph
For analyses of dependence of linguistic variables on contact processes it has
become a common practice to construct neighbor graphs of languages. In such
a graph, languages are usually represented by points on amap and pairs of lan-
guages are connected by edges if the distance between them does not exceed
a certain threshold, which is usually taken to be 1000 kilometers (Towner et al.
2012; Yamauchi &Murawaki 2016). After constructing such a graph, it becomes
straightforward to consider only immediate neighbors of a given language or
to construct another graph, where languages are connected if they belong to
the same phylogenetic grouping and then compare distributions of features
on these two graphs.
This approach assumes that languages are on average in contact with

‘nearby’ languages. However, largemaximal distances between neighbors force
researchers topostulate spurious cases of distal contact phenomena: 1000-edge
graphs produce cases when language A ‘influences’ language B, even though it
is separated from it by the territory of language C. Such cases are not, to my
knowledge, discussed in the contact literature (except for cases of super-re-
gional languages such as Arabic or Russian, which cannot be easily captured
by any purely geography-based graph model), and it seems that it is safe to
assume that languages engage in most intense contact with their immediate
neighbors.
The latter notion is not strict, but it is easily formalized in the form of

Delaunay triangulation of an array of points (Delaunay 1934). In this trian-
gulation, three points are connected by edges if they form a triangle (or, in
higher dimensions, a simplex)whose circumferencedoes not include anyother
points.
An important property of Delaunay triangulation is that it always traces

the convex hull of the points. This makes it easy to construct neighbor graphs
for geographical points without actually computing a Delaunay triangulation
itself: after converting latitudes and longitudes to 3D Cartesian coordinates
(assuming that the Earth is spherical with its center at the origin), we can find
the convex hull of the points and then delete the edges connecting languages
separated by a geodesic distance that exceeds some predefined limit (for this
study taken to be equal to 1000 kilometers following da Silva & Tehrani 2016
and Murawaki & Yamauchi 2018). Using this method, if languages A and B are
separated by the territory occupied by language C they are extremely unlikely
to be connected by an edge. Conversely, the upper limitmakes sure that no spu-
rious long-range contacts between languages on continental boundaries are
assumed. The neighbor graph used in the analyses in this paper is shown in
Figure 1.
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figure 1 Neighbor graph of the languages of Eurasia analyzed in this study

This graph provides a formal definition of neighboring languages—as those
separated by one edge—and allows for a new interpretation of distance be-
tween languages as measured in ‘degrees of separation’. Further discussion of
the latter notion is deferred to §4, where NPM is introduced.

3 Pairwise distances between inventories

Using the neighbor graph described in the preceding section and the phyloge-
netic metadata provided by PHOIBLE and EURPhon, it is possible to divide all
the language pairs in the sample into six groups according to whether they are
neighbors and belong to the same phylum and the same genus. The groups are
described in Table 1.
Using a dissimilarity metric, we can then compute phonological differences

in the language pairs and test for differences between different groups (with
the null hypothesis that median distances in pairs from different groups will
be the same). The key question is whether we can induce an ordering on these
six groups and, if yes, how this ordering is determined.
Two dissimilarity metrics were used in this study.
The first one is the classical Jaccard dissimilarity:

Jaccard(A, B) = 1 − |A ∩ B|
|A ∪ B|

where A and B are sets of phonemes found in the respective languages.
The Jaccard metric does not take into account a common diachronic pro-

cess of phoneme splitting due to development of VOTdistinctions or additional
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table 1 Classification of language pairs in the dataset

Coding Neighbors Same phylum Same genus # of language pairs

(−n; −p; −g) – – – 97129
(+n; −p; −g) + – – 1134
(−n; +p; −g) – + – 13950
(−n; +p; +g) – + + 1583
(+n; +p; −g) + + – 890
(+n; +p; +g) + + + 754

articulations, such as aspiration and glottalization. This leads to the fact that
there is no reported difference between, on the one hand, a pair of inventories
that share some core of segments with one of them having enriched this core
by developing some additional articulation (a simplified example could look
like /p, t, k/ vs. /p, t, k, ph, th, kh/), and on the other hand, a pair of inventories
sharing a common core beyond which the rest of the phonemes are not evi-
dently related (/p, t, k/ vs. /p, t, k, ʔ, ʕ, χ/). A real-life example is that of Serbian,
which, unlike most Slavic languages, lacks the hard–soft contrast, but whose
overall inventory structure is rather similar to andmore or less ‘derivable’ from
e.g. that of Russian. Consequently, it may be assumed that the Jaccard metric
often overestimates differences between inventories.
In order to overcome this limitation, a new metric is proposed, Closest-

Relative Cumulative Jaccard Dissimilarity (CRCJ). It is computed in the fol-
lowing way: given inventories I1 and I2 where each phoneme is described as
a set of IPA features, for each phoneme p in I1 we find its closest relative in
I2—that is, the phoneme in I2 having the smallest feature-wise Jaccard dis-
similarity from p—then sum these minimal Jaccard dissimilarities and finally
repeat the procedure starting with I2.5 Formally, the metric can be defined as
follows:

CRCJ(I1, I2) = ∑
p∈I1

Jaccard(p, q) + ∑
r∈I2

Jaccard(r, s)

where q = arg minx∈I2 (Jaccard(p, x)) and s = arg minx∈I1 (Jaccard(r, x)).

5 For example, given the inventories /p, t, k/ vs. /p, t, k, ph, th, kh/, we first add 0 for each segment
from the first inventory, as they all have direct counterparts in the second one, then add 0 for
/p, t, k/ from the second inventory, and finally add 1–3/4 for each of /ph, th, kh/ as they share
all but one of their features with /p, t/ and /k/ respectively. The end result is 3/4.
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figure 2 Boxplots of Jaccard (top) and CRCJ (bottom) distances between language pairs in
different groups

Unlike the Jaccard metric, CRCJ is not normalized (the values do not fall
between 0 and 1, butmay take arbitrary positive values), which reflects dispari-
ties in the sizes of consonantal inventories. In otherwords, if the Jaccardmetric
measures the degree of overlap between inventories without taking finer sim-
ilarities between them into account, CRCJ measures their total difference and
pays attention to these similarities.
As a result, as is evident from boxplots of distributions of Jaccard and CRCJ

dissimilarity values for the six groups described above shown in Figure 2, CRCJ
values, despite being non-normalized, actually have smaller deviations. Also,
it may be noted that while the Jaccard distributions are right heavy (they have
a long left tail consisting of outlying pairs having low dissimilarity), the CRCJ
distributions are left heavy (with long right tails consisting of several language
pairs with an unusually big distance between them), which suggests that the
Jaccard metric indeed fails to capture similarities between inventories consist-
ing of similar, but not identical segments.
As the distributions of dissimilarities are not normal, we used the Kruskal–

Wallis test to check if there are significant differences between groups and then
conducted a post-hoc analysis of group differences using the Dunn test.
In the case of Jaccard dissimilarity, the Kruskal–Wallis test showed signifi-

cant differences between groups at an α-level of 0.05, and the post-hoc analysis
confirmed that all between-group differences are significant as well.
Results of tests of between-group differences in CRCJ values are the same,

except for the fact that there is no significant difference between groups (+n;
−p; −g) and (+n; +p; −g) (p = 0.055). The result is clearly borderline and hinges
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on the uncertain merit of 0.05 as the significance level; however, it may indi-
cate that neighboring languages from different phyla display parallel dynamics
of segment-inventory development and that this development mostly consists
of acquiring distinctions in VOT and additional articulations, in line with the
analysis presented by Lindblom &Maddieson (1988).
Based on the results of the post-hoc tests and the differences between

median dissimilarity values, we may propose the following hierarchy:

(+n; +p; +g)
< (−n; +p; +g)
< (+n; +p; −g), (+n; −p; −g)
< (−n; +p; −g)
< (−n; −p; −g)

Most importantly, it shows that
1. non-neighboring languages from the same phylum but not the same

genus (−n; +p; −g) tend to be more phonologically different between
themselves than unrelated neighboring languages (+n; −p; −g); and that

2. neighboring languages from the same genus (+n; +p; +g) tend to be signif-
icantly more similar to each other phonologically than non-neighboring
languages from the same genus (−n; +p; +g).

Thus, language contact is never insignificant for thedevelopmentof phonologi-
cal inventories, at least given the commonly assumedphylogenetic boundaries,
and it becomes more significant than phylogeny with the passage of time.6

4 Predicting phonological distributions

In this section, I will attempt to predict distributions of individual segments
based on areal data. To this end, a new method for quantifying language con-
tact is introduced in §4.1. In §4.2, distributions of different consonants are
analyzed.

4.1 Neighbor-pressuremetric
The neighbor graph built according to the procedure described in §2.2 is used
in this study to construct a measure of spatial density for a feature of interest,

6 The answer to the question whether this holds for phyla with possible deeper genetic con-
nections, such as the Indo-European and Uralic families, is a subject for future work.
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the neighbor-pressuremetric, which provides a quantitative assessment of the
extent to which neighbors of a given language are nudging it towards acquiring
or preserving the binary feature of interest.
A somewhat simpler way to incorporate language contact into a model is

to use pairwise distances (geodesic or ‘travel’ distances computed according to
some procedure) between languages. This approach, although having proved
to give good results for certain type of tasks (Jaeger et al. 2011), has several con-
ceptual drawbacks in the context of this study:
1. It does not naturally provide a set of neighbors for a given language. In

order to produce a neighbor set for a given language, one has to intro-
duce an arbitrary cut-off distance; the drawbacks of this approach were
discussed above. It may be noted that some models do not need a neigh-
bor set, but it is advantageous to have a unifiedway to incorporate contact
data into the calculations, cf. the analyses in §§3 and 4.3.

2. It does not correspond to an intuitive notion of ‘languages in contact’
assumed in the language-contact literature.When regressing ondistances
between languages, we implicitly introduce a completely new way of
thinking about language contact, which, as far as I am aware, has not
received any conceptual assessment.

3. It has been reported (Wichmann & Holman 2009; Kalyan & Donohue
2017) that there is a cut-off distance of several thousand kilometers after
which languages lose any noticeable influence on one another; this has
been corroboratedbymyowncalculations.Therefore, rawdistances seem
to be a rather noisy predictor variable. A complex transformation can be
devised that will make mutual influence decay sublinearly for small dis-
tances (there is no real difference if languages are separated by 15 or 20
kilometers) and then make it decay polynomially or even exponentially
from some fixed point onwards, but to my knowledge no such function
has been proposed to date.

It may also be noted that the regression-on-distance model is tightly coupled
with a particular diachronic scenario, that of migration. Jaeger et al. (2011)
envisage languages as radiating from Africa and changing along the way. The
data-generating process assumed for the data under discussion, on the other
hand, views languages as relatively spatially stable during the last millennium,
evolving in time and influencing each other in the process—a general case of
long-range influence in this model is assumed to be mediated by intervening
linguistic communities.
Finally, the nature of the studied variables is significant: Jaeger et al. (2011)

analyze distributions of inventory sizes, a variable which can be thought of as
decaying with time or travel distance. In this paper, distributions of atomic
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units are investigated, and it is evident from the impressionistic analysis of
the data that these distributions tend to have relatively sharp boundaries, thus
necessitating the addition of a discrete layer to the model.
Therefore, instead of using geographical distances directly, I propose to

weight the influenceof a languageonanother languageby thedistance separat-
ing them in the graph—theminimal number of edges that have to be traversed
in order to get from one node to another. In order to account for the fact that
languages interact mainly with their immediate neighbors, but not to preclude
the possibility that languages may be in contact even if they are not connected
by an edge in the graph, I propose to assume that the influence of a language
on another language decreases exponentially with the length of minimal path
between them. The resultant formula is the following:

NPM(l0, L) = ∑
l∈L,l≠l0

il
2dl

where L is the set of all languages in the sample; l0 is the language for which
the density measure is computed; il is equal to 0 or 1 according to whether a
given language possesses the feature of interest; and dl is theminimal length of
a path between l0 and l (language of interest) in the neighbor graph.
In other words, in order to compute NPM for a given feature for a given lan-

guage we add 1/2distance in the graph for each other language that possesses this
feature.

4.2 Modelling consonant distributions with areal data using logistic
regression

Using the NPM metric defined in the previous section, it is possible to investi-
gate difference between consonants as regards the dependence of their distri-
bution on language contact. These differences can be interpreted as the extent
to which different segments are prone only to be inherited (vertical transmis-
sion) or also to be acquired from neighboring languages (horizontal transmis-
sion).
In order to address this question, two nested logistic regressionmodels were

fitted for every segment in the data sample that is found in 20+ languages (98
segments).
Onemodel included a factor predictor for phylum and genus combined into

a single factor variable (e.g. ‘Indo-European-Germanic’) with treatment (a.k.a.
‘dummy’) coding and the other one additionally included NPM. Since simple
inclusion of NPM values can lead to possible collinearity between independent
variables (as neighboring languages also tend to be related), a simple linear
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regression was first fit to the data with phylum+genus as an independent vari-
able and NPM as a response variable. The residuals from this model (i.e. the
component in the NPM values not predictable from phylum+genus) were then
used in the bigger logistic-regression model.
In order to compute significance values for the effect of NPM, a permutation

test was performed following the procedure described by Potter (2005). The
rationale for the test, which makes very few assumptions about the distribu-
tion behind the data, is the following: under the null hypothesis, the likelihood
given the data of the model, which includes NPM as a predictor, should be the
same as the likelihood of the smaller model (and their likelihood ratio should
be close to 1).Therefore, randomlypermuting theNPMresidualswe shouldwith
equal probability increase or decrease the likelihood of the new model. If we
record likelihood ratios for two models for different random permutations of
NPM residuals (1000 random permutations were used) and then compute the
proportion of the ratios that are smaller than the true ratio, we will obtain the
probability that a likelihood ratio as big as that of the true models could have
been obtained by chance [cf. also Janssen et al. (2006)].
The p-values obtained using this procedure were first corrected for mul-

tiple comparison using the Holm method, which showed that there are 10
phonemes significantly dependent on NPM in their distribution (cf. first ten
rows inTable 2). It is evident, however, that thismethod is not powerful enough,
in the statistical sense that it too often assumes that the null hypothesis is true.
Indeed, under all the null hypotheses, the distribution of the respective p-

values is uniform. Therefore, the α-level of 0.05 should give around 98×0.05 ≈ 5
Type I errors (false rejections of the null hypothesis) for 98 tests. Our data in the
meantimegive 35 p-values that are less than0.05.Theprobability of obtaining a
result of thismagnitudeby chance canbe approximatedusingPoissondistribu-
tionwith themean equal to 5 (by subtracting from 1 the probabilities of obtain-
ing 0, 1, …, 34 spurious results), and this probability is essentially equal to zero.
It must be remembered that familywise error rate methods such as Bonfer-

roni and Holm corrections control the probability of at least one Type I error,
which is too strict in our case.7 As we actually can tolerate some degree of error
without prejudicing the validity of the analysis, we instead propose to use the
False Discovery Ratemethod (Benjamini &Hochberg 1995), which controls for
the share of falsely rejected null hypotheses. Under an FDR of 0.05 (one in 20
significant p-values is likely to be due to chance) we obtain a list of 23 segments

7 ‘The control of the FWER is important when a conclusion from the various individual infer-
ences is likely to be erroneous when at least one of them is.’ (Benjamini & Hochberg 1995:
290)
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table 2 Consonants whose distribution is significantly dependent on NPM

Phoneme p-values Count

Uncorrected Holm corrected FDR corrected

θ < 0.001 < 0.001 < 0.001 24
ʈ < 0.001 < 0.001 < 0.001 124
ʈʰ < 0.001 < 0.001 < 0.001 80
ɖ < 0.001 < 0.001 < 0.001 119
ɖʱ < 0.001 < 0.001 < 0.001 23
ɽ < 0.001 < 0.001 < 0.001 56
ʂ < 0.001 < 0.001 < 0.001 82
gʱ < 0.001 < 0.001 < 0.001 48
ɣ < 0.001 < 0.001 < 0.001 87
q < 0.001 < 0.001 < 0.001 85
bʱ 0.001 0.088 0.007 33
sʲ 0.001 0.088 0.007 26
ʐ 0.001 0.088 0.007 46
ɖɽ 0.001 0.088 0.007 36
ɕ 0.002 0.168 0.013 77
v 0.004 0.332 0.025 158
ʈʂʰ 0.005 0.410 0.029 33
pˀ 0.006 0.486 0.031 20
ð 0.006 0.486 0.031 33
kˀ 0.008 0.632 0.037 25
x 0.008 0.632 0.037 157
ʈʂ 0.009 0.693 0.040 48
β 0.011 0.836 0.047 33

whose distribution is significantly dependent on the NPMvalues. The segments
and corresponding p-values with Holm and FDR corrections are presented in
Table 2.
The top of the chart is dominated by retroflex segments (6 out of top 10, 10

out of top 23). Together with voiced aspirated (a.k.a. ‘murmured voiced’) stops
/gɦ, bɦ/ they seem to point to contact processes that took place in and around
South Asia (Bashir 2016). Another prominent group are interdental fricatives
/θ, ð/, which have a reputation of being ‘marked’ sounds and are known to be
easily lost (Blevins 2006). It is logical therefore that their distribution is largely
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shaped by borrowing events (perhaps largely driven by Arabic, a major source
of borrowed segments inWest Asia).
There is a disparity between the circumspect number of individual pho-

nemes, whose distribution is significantly dependent on NPM, on one hand,
and, on the other hand, the evident importance of being neighbors in the
language graph formagnitudes of differences betweenwhole inventories high-
lighted in the previous section. This suggests that neighboring inventories con-
verge by acquiring (or losing) all kinds of segmentswithout evident restrictions
(cf. borrowing of clicks in SouthAfrica, of ejectives in theCaucasus, and of pha-
ryngealized segments inWest Asia).

4.3 Non-linearmodeling
The study reported in the previous section showed that for a wide array of con-
sonants, incorporating areal data in the models of their distributions leads to
significant increase in explained variance. However, there is also a possibility
that the presence of a particular segment in a given inventory may depend
on the presence of several segments in neighboring inventories. For example,
if several neighboring inventories contain a set of retroflex plosives, but do
not contain retroflex affricates, the probability that a retroflex affricate will be
present in the inventory in question would still be higher than if no retroflex
plosives were present in the neighborhood. Incorporating all interactions of
such kind as predictors in a linear model is not feasible.
One way to work around this issue would be to compute local densities of

features and feature combinations instead of full segments.However, a series of
preliminarymodels showed that using feature combinations instead of full seg-
ments for predicting structures of inventories leads toworse, and not better, fit.
Another option is to use a more complex model, which is able to automat-

ically extract complex dependencies from the data. In addition to estimating
the importance of complex dependencies in language contact, these models
also make it possible to try to directly incorporate internal inventory data as a
predictor.This thus contrasts the contributionof phylogenetic, areal, and struc-
tural factors to the distributions of individual consonants.

4.3.1 Data and models
In order to take a fuller account of contact data, the data set used for fitting
logistic regression models from the previous section was enriched with expo-
sure sets (binary vectors specifying which segments are present in the invento-
ries of neighboring languages) as well as phylum and genus sets (binary vectors
specifying which segments are present in the inventories of languages from
the same phylum/genus respectively). Exposure and phylum/genus sets do not
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take into account whether a segment is present in one or several neighbor-
ing/related inventories: only values of 0 and 1 are used. The analysis based on
phylum/genus sets was necessarily based on a smaller dataset because isolates,
for which no phylum/genus sets could be constructed, had to be removed.
In order to further incorporate internal data into the analysis, punctured

inventory sets were created, where the column corresponding to the segment
in question is always zeroed out, but the presence of all other segments is faith-
fully registered.
The intention is now to compare the prediction accuracy of non-linearmod-

els with simpler logistic-regression models. It may be noted that the linear
model used for predicting segment distributions in §4.2 is probably not an
optimal one for this task: a regularized regression model, which does not pro-
duce unbiased estimators of the parameters, but is more robust with respect
to quirks in the distributions of the predictor variables, usually produces bet-
ter predictions. In order to make the comparison fair, an elastic-net model
implemented in the R package glmnet (Simon et al. 2011) was used with all the
parameters set todefault and the regularization strengthwas tunedusing cross-
validation.
A 100-tree random forest classifier with default parameters implemented in

the Python package scikit-learn (Pedregosa et al. 2011) was used as a non-
linear predictor.8

4.3.2 Results
In order to test the importance of phylogenetic and areal data for predicting
consonant inventories, a series of regularized logistic-regression models was
first fit to the data using the following predictors:
1. Basic frequencies (i.e. each segment was predicted for each language if it

is present in more than half of all languages)
2. Basic frequencies + phylum + genus
3. Basic frequencies + NPM
4. Basic frequencies + phylum + genus + NPM

8 A deep-neural-network classifier with six fully connected hidden layers consisting of 183, 91,
45, 22, 11, and 5 rectified linear units and a softmax output layer fit using the Python package
tensorflow (Abadi et al. 2015) with the default Adagrad optimizer was also fit to the data in
order to check if there is complex structure unrecoverable using a random-forest classifier.
The performance of the neural net was mostly marginally worse than that of the random
forest and is not reported, except for the case when internal inventory data are used as a pre-
dictor.
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table 3 Performance of regularized logistic-regression models

Model/Metric Accuracy ROC AUC

Frequencies 0.837 0.829
Frequencies + phylum + genus 0.84 0.843
Frequencies + NPM 0.857 0.897
Full model 0.862 0.9

table 4 Performance of non-linear classifiers

Model/Metric Accuracy ROC AUC

Random forest with phylum sets 0.866 0.886
Random forest with genus sets 0.871 0.897
Random forest with exposure sets 0.884 0.903
Random forest with internal data 0.91 0.979

Accuracy scores and the AUC-ROCmetric for all four models obtained by 10-
fold cross-validation are reported in Table 3.
The results indicate thatNPMon its own is abetter predictor for distributions

of Eurasian consonants than phylogenetic data, but that the best predictive
performance is achieved when they are combined.
Performance of these models was then compared with performance of a

random-forest classifier, which, in addition to phylogenetic information, used
exposure/phylum/genus sets or internal inventory data. Both classifiers were
trained on random 90% of the data with 10% of data points used for valida-
tion. The procedure was repeated several times with nearly identical results,
and only the results of the last run are reported in Table 4.
A random forestwith any of exposure/phylum/genus sets outperforms logis-

tic-regression models, which indicates that phylogeny and NPM used as linear
predictors do not adequately explain distributions of segments. A random for-
est working from exposure sets furthermore clearly beats the model based on
phylum sets and performs better than the one using genus sets. As in the case
of using exposure/phylum/genus sets we cannot effectively decorrelate the
predictors, it is impossible to contrast the effect of language contact and phy-
logeny directly, but it seems that exposure sets are a better predictor in general
(it also must be remembered that the exposure-set classifier also covers lan-
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guage isolates, for which no predictions can bemade based on phylogeny). The
incorporation of both internal inventory information and exposure sets as pre-
dictors counterintuitively lead to degraded performance, presumably because
of a lower signal-to-noise ratio in the resulting data.
Interestingly, but not entirely surprisingly, internal inventory data provide a

more solid basis for predicting presence or absence of a particular consonant.
Thatmeans that taking an inventory table and covering one of the cells wemay
very accurately predict whether it is filled or not knowing only basic frequen-
cies (even if we drop phylum and genus as predictors, accuracy stays above
0.91 for a random forest and above 0.925 for a neural network). This indicates
that there may exist universal tendencies in inventory structures, akin to those
explored in Dunbar & Dupoux (2016), which are better captured by the neural
network model than by the random forest.
The overall difference in performance between logistic-regression models

and non-linear classifiers having access to inventories of neighboring/related
languages is noticeable (the accuracy rises from ≈ 0.86 to ≈ 0.9) but is actually
hardly crucial for typological studiesmostly interested in overall trends. There-
fore itmay be concluded that NPM as a proxymeasure of language contact is an
adequate instrument for controlling for language contact in typological studies
and can be used in this capacity instead of more coarse-grained macroarea-
based variables.

Conclusion

In this paper, the following findings were presented:
1. Based on full-inventory differences defined using the Jaccard dissimilar-

ity and the novel CRCJ (Closest-Relative Cumulative Jaccard Dissimilar-
ity) metric, it was demonstrated that language contact consistently influ-
ences inventory structures: neighboring languages from the same phylum
and even from the same genus are significantly more similar phono-
logically than non-neighboring ones. Moreover, according to the CRCJ
metric, neighboring languages from the same phylum, but not the same
genus, are not significantly more phonologically similar to each other
than neighboring languages from different phyla (p-value for the differ-
ence between medians is equal to 0.055; more data is needed to clarify
this issue).

2. A novel measure of exposure of a language to a particular segment—the
Neighbor Pressure Metric (NPM)—was shown to be a significant predic-
tor for the geographical distribution of 23 out of 98 segments found in 20+
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Eurasian languages, a good share of them connected to the South Asian
linguistic area. It was also shown that on its own NPM is at least as good
a predictor for the presence of a particular consonant in a language as
phylogenetic data in the shape of phylum and genus labels.

3. There exist complex statistical dependencies between the inventory of
a given language and full inventories of its neighboring languages. Non-
linear classifiers incorporating unions of inventories of neighboring or
related languages as predictors perform significantly better than logistic-
regression models based only on single-segment information, and inven-
tories of neighboring languages tend to be a slightly better predictor than
inventories of related languages.

Together these findings highlight the necessity for developing nuanced mod-
els of phonological-inventory development, which must take into account
not only phylogenetic and socio-geographical factors, but also language con-
tact. Conversely, they show that for typological studies of consonant-inventory
structures it is imperative to incorporate language contact as a control variable
and that for binary and possibly multivariate features it is possible to do so by
using NPM as defined on a suitable neighbor graph.
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